Initial Conditions:
Ψ(0) :
Ψ'(0) :
D²Ψ(x) = -*Ψ(x)
s²F(s) - sf(0) - f'(0) = -2mE/ħ² F(s)
s²F(s) + 2mE/ħ²F(s) = sf(0) + f'(0)
F(s) = (sf(0)+f'(0))/(s²+2mE/ħ²)
F(s) = (1) / (s2 + 1)
Operator Name | Operator | PlaceValue Operator | PlaceValue | Corresponding Wave Function |
---|---|---|---|---|
State Vector Ψ | Ψ | Ψ | ||
Momentum Ψ | pΨ | |||
Position Ψ | xΨ | .0123456 ⊗ .1 * Ψ | ||
Momentum Position Ψ | pxΨ | 10 * xΨ | ||
Position Momentum Ψ | xpΨ | .0123456 ⊗ .1 * pΨ | ||
Commutator Ψ | (px-xp)Ψ | pxΨ-xpΨ | ||
Commutator | px-xp | (pxΨ-xpΨ)/Ψ | ← Always 1 by Heisenberg Uncertainty |